Fabrication of Submicron Beams with Galvanic Etch Stop for Si in TMAH
نویسندگان
چکیده
A novel method has been developed to fabricate submicron beams with galvanic etch stop for Si in TMAH. The different Au:Si area ratios before and after the release of the beams are used to trigger the galvanic etch stop to fabricate submicron single crystal Si beams in standard Si wafers. Before the beams are released from the substrate, the Au electrodes are connected to the substrate electrically. The Au:Si area ratios are much smaller than the threshold value. TMAH etches the Si wafers. After the beams are fully released, they are mechanically supported by the Au wires, which also serve as the galvanic etch stop cathodes. The Au:Si area ratios are much larger than the threshold value. The beams are protected by galvanic etch stop. The thicknesses of the beams are determined by shallow dry etching before TMAH etching. A 530 nm thick beam was fabricated in standard (111) wafers. Experiments showed that the beam thicknesses did not change with over etching, even if the SiO(2) layers on the surface of the beams were stripped.
منابع مشابه
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications i...
متن کاملEtching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMS
Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved a...
متن کاملFabrication of Nanoscale Silicon Fracture Test Specimens and Calculation of Ideal Strength of Silicon
This work is an extension of that performed by Alan, et al. [1, 2], investigating the effect of surface characteristics on the strength of nanoscale silicon (Si) structures. Progress, utilizing CNF, during the 2011/2012 year has been focused in two main areas. We have replicated the process of Alan, et al., to fabricate nanoscale Si beams with current equipment and techniques, and have made pro...
متن کاملTMAH/IPA anisotropic etching characteristics
The main advantage of tetramethyl ammnium hydroxide (TMAH)-based solutions is their full compatibility with IC technologies. In this work a new etching system of TMAH/IPA (isopropyl alcohol) is suggested. The influence of the addition of IPA to TMAH solutions on their etching characteristics is presented. The etch rates of (100) oriented silicon crystal planes decreases linearly with decreasing...
متن کاملThe fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching.
Local gallium implantation of silicon by a focused ion beam (FIB) has been used to create a mask for anisotropic tetramethylammonium hydroxide (TMAH) wet etching. The dependence of the etch stop properties of gallium-doped silicon on the implanted dose has been investigated and a dose of 4 x 10(13) ions cm(- 2) has been determined to be the threshold value for achieving observable etching resis...
متن کامل